180 research outputs found

    The influence of boat moorings on anchoring and potential anchor damage to coral reefs

    Get PDF
    Recreational boating is increasingly popular and provides social and economic benefits, but can also have ecological impacts, including damage from anchoring on sensitive seabed habitats like coral reefs. Mooring buoys are commonly used to manage anchoring activity, and I tested whether they moderated anchoring on coral reefs in the British Virgin Islands. A spatial survey revealed that overall boat use (moored plus anchored) was 3.6 times higher at sites with moorings than those without. The density of boats anchored on coral reef was, however, reduced by roughly half at sites with moorings. A survey of two sites before and after moorings were installed confirmed that the addition of moorings increased the total number of boats at a site, but reduced the rate of anchoring on reef. At any given site, the rate of anchoring on reef increased as the total number of boats present increased, but the effect of crowding was diminished at sites with moorings. Moorings can thus be an effective management tool for mitigating anchor damage to sensitive habitats, and because boat densities continue to rise worldwide, these findings focus attention on discovering why moorings reduce the tendency of boats to anchor on reef as sites become more crowded

    Trace elements in otoliths indicate the use of open-coast versus bay nursery habitats by juvenile California halibut

    Get PDF
    Many coastal fishes use inshore nursery habitats as juveniles, but it is often difficult to define which nursery areas supply most recruits to adult populations. We tested whether trace element concentrations in otoliths can be used to identify which of 2 nursery habitats (bays or shallow open coast) were occupied by juvenile California halibut. Juveniles from bays in 1998 had concentrations of Cu and Pb in their otoliths that were higher than those in open coast juveniles of the same year. This broad-scale difference between bay and open coast juveniles remained intact when bay juveniles from 1994 to 1997 were added to the comparison, and juvenile halibut could be assigned to their nursery habitat of origin quite accurately (83%) using otolith concentrations of Cu and Pb. At a finer spatial scale, otolith concentrations of Cu and Pb differed among individual bays, and fish from the same bay could differ among years, precluding their use as markers of nursery habitat use at these scales. Like halibut otoliths, sediments from bays had higher concentrations of Cu and Pb than open coast nursery sites, and this difference was consistent over 11 yr. Otoliths and sediments from individual bays, however, showed no correlation in Cu and Pb concentrations. The concentration of Cu and Pb in sediments and their deposition in otoliths were thus loosely matched at a broad scale, though the underlying cause of this link is not known. A discriminant model, parameterized using Cu and Pb levels in juvenile otoliths, was used to classify prior nursery habitat use by 19 larger halibut (of unknown origin). Eleven of these halibut had high levels of Cu and Pb in the part of the otolith deposited as a juvenile, and were classified as of bay origin. The other 8 halibut had low otolith Cu and Pb levels in the juvenile portion of their otoliths and were classified as having used open coast nurseries. Overall, our results suggest that this approach has the potential to allow identification of nursery habitat use by California halibut at a broad scale (bay vs open coast) but not at a fine scale (individual bays)

    Evaluating how variants of floristic quality assessment indicate wetland condition

    Get PDF
    Biological indicators are useful tools for the assessment of ecosystem condition. Multi-metric and multi-taxa indicators may respond to a broader range of disturbances than simpler indicators, but their complexity can make them difficult to interpret, which is critical to indicator utility for ecosystem management. Floristic Quality Assessment (FQA) is an example of a biological assessment approach that has been widely tested for indicating freshwater wetland condition, but less attention has been given to clarifying the factors controlling its response. FQA quantifies the aggregate of vascular plant species tolerance to habitat degradation (conservatism), and model variants have incorporated species richness, abundance, and indigenity (native or non-native). To assess bias, we tested FQA variants in open-canopy freshwater wetlands against three independent reference measures, using practical vegetation sampling methods. FQA variants incorporating species richness did not correlate with our reference measures and were influenced by wetland size and hydrogeomorphic class. In contrast, FQA variants lacking measures of species richness responded linearly to reference measures quantifying individual and aggregate stresses, suggesting a broad response to cumulative degradation. FQA variants incorporating non-native species, and a variant additionally incorporating relative species abundance, improved performance over using only native species. We relate our empirical findings to ecological theory to clarify the functional properties and implications of the FQA variants. Our analysis indicates that (1) aggregate conservatism reliably declines with increased disturbance; (2) species richness has varying relationships with disturbance and increases with site area, confounding FQA response; and (3) non-native species signal human disturbance. We propose that incorporating species abundance can improve FQA site-level relevance with little extra sampling effort. Using our practical sampling methods, an FQA variant ignoring species richness and incorporating non-native species and relative species abundance can be logistically efficient, easily understood, and effective for wetland assessment

    Parasitism and a Shortage of Refuges Jointly Mediate the Strength of Density Dependence in a Reef Fish

    Get PDF
    Various predator-prey, host-pathogen, and competitive interactions can combine to cause density dependence in population growth. Despite this possibility, most empirical tests for density-dependent interactions have focused on single mechanisms. Here we tested the hypothesis that two mechanisms of density dependence, parasitism and a shortage of refuges, jointly influence the strength of density-dependent mortality. We used mark recapture analysis to estimate mortality of the host species, the bridled goby {Coryphopterus glaucofraenum). Sixty-three marked gobies were infected with a copepod gill parasite {Pharodes tortugensis), and 188 were uninfected. We used the spatial scale at which gobies were clustered naturally (~4 m2) as an ecologically relevant neighborhood and measured goby density and the availability of refuges from predators within each goby\u27s neighborhood. Goby survival generally declined with increasing density, and this decline was steeper for gobies with access to few refuges than for gobies in neighborhoods where refuges were common. The negative effects of high density and refuge shortage were also more severe for parasitized gobies than for gobies free of parasites. This parasite has characteristics typical of emerging diseases and appears to have altered the strength of a preexisting density-dependent interaction

    Predators, Prey Refuges, and the Spatial Scaling of Density-Dependent Prey Mortality

    Get PDF
    We tested the biological cause of density-dependent mortality in the bridled goby (Coryphopterus glaucofraenum), a small coral reef fish, and evaluated whether this knowledge allowed us to detect density dependence at different spatial scales in natural habitats. To identify the biological cause of density dependence, we manipulated both population density and the availability of shelter (crevices used as refuges from predators) in small plots of continuous reef. We detected strong density-dependent mortality in plots with few refuges, but mortality was density independent in plots with abundant refuges, indicating that limited shelter causes density dependence. Predator density was unrelated to the density of gobies and refuges, suggesting that predators displayed a type III functional response in patches with few refuges. In a second experiment, we manipulated goby density within replicate plots of three sizes (4, 16, and 64 m2) that varied naturally in the availability of refuges. If refuge availability was ignored, mortality appeared to be density independent at all scales. If, however, plots were grouped by refuge availability, mortality was density dependent in plots with few refuges, but low and density independent in plots with many refuges at all spatial scales. Understanding the mechanism of density dependence (refuge shortage) was thus required to measure the strength of density dependence in natural, spatially variable, habitat. We suggest that density dependence was detectable in plots of different sizes because the relationships between the densities of gobies, refuges, and goby predators were similar across the spatial scales we studied. Our work demonstrates that identifying the biological interactions that cause density dependence, and characterizing the spatial domains at which those interactions operate, will be important to accurately assess the effects of density dependence on population dynamics

    Small-scale field experiments accurately scale up to predict density dependence in reef fish populations at large scales

    Get PDF
    Field experiments provide rigorous tests of ecological hypotheses but are usually limited to small spatial scales. It is thus unclear whether these findings extrapolate to larger scales relevant to conservation and management. We show that the results of experiments detecting density-dependent mortality of reef fish on small habitat patches scale up to have similar effects on much larger entire reefs that are the size of small marine reserves and approach the scale at which some reef fisheries operate. We suggest that accurate scaling is due to the type of species interaction causing local density dependence and the fact that localized events can be aggregated to describe larger-scale interactions with minimal distortion. Careful extrapolation from small-scale experiments identifying species interactions and their effects should improve our ability to predict the outcomes of alternative management strategies for coral reef fishes and their habitats

    Comparing fishers\u27 and scientists\u27 estimates of size-at-maturity and maximum body size as indicators of overfishing

    Get PDF
    We tested whether fishers’ local ecological knowledge (LEK) of two fish life-history parameters, size at maturity (SAM) at maximum body size (MS), was comparable to scientific estimates (SEK) of the same parameters, and whether LEK influenced fishers’ perceptions of sustainability. Local ecological knowledge was documented for 82 fishers from a small-scale fishery in Samaná Bay, Dominican Republic, whereas SEK was compiled from the scientific literature. Size at maturity estimates derived from LEK and SEK overlapped for most of the 15 commonly harvested species (10 of 15). In contrast, fishers’ maximum size estimates were usually lower than (eight species), or overlapped with (five species) scientific estimates. Fishers’ size-based estimates of catch composition indicate greater potential for overfishing than estimates based on SEK. Fishers’ estimates of size at capture relative to size at maturity suggest routine inclusion of juveniles in the catch (9 of 15 species), and fishers’ estimates suggest that harvested fish are substantially smaller than maximum body size for most species (11 of 15 species). Scientific estimates also suggest that harvested fish are generally smaller than maximum body size (13 of 15), but suggest that the catch is dominated by adults for most species (9 of 15 species), and that juveniles are present in the catch for fewer species (6 of 15). Most Samaná fishers characterized the current state of their fishery as poor (73%) and as having changed for the worse over the past 20 yr (60%). Fishers stated that concern about overfishing, catching small fish, and catching immature fish contributed to these perceptions, indicating a possible influence of catch-size composition on their perceptions. Future work should test this link more explicitly because we found no evidence that the minority of fishers with more positive perceptions of their fishery reported systematically different estimates of catch-size composition than those with the more negative majority view. Although fishers’ and scientific estimates of size at maturity and maximum size parameters sometimes differed, the fact that fishers make routine quantitative assessments of maturity and body size suggests potential for future collaborative monitoring efforts to generate estimates usable by scientists and meaningful to fishers

    Bioeconomic analysis of Engraulicypris sardella (USIPA) in South east arm of Lake Malawi

    Get PDF
    Usipa Engraulicypris sardella is the most abundant small pelagic species in Lake Malawi. It plays an important part in the lake communities’ economy and food security. However, much remains unknown on their stock status and bioeconomic importance. This study is carried out to estimate the maximum economic yield and maximum sustainable yield for Usipa fishery in the South-east arm of Lake Malawi. Structured quantitative questionnaire was used to collect information from 139 informants on the price of usipa landings and cost of fishing effort. Catch and effort data for Usipa were used in a biomass dynamic model (ASPIC) to estimate key parameters (r, q and k). A bioeconomic model was further developed based on the Gordon-Schaefer model using cost and revenues of the Usipa fisheries to derive the Maximun Sustainable Yield (MSY) and the Maximum Economic Yield (MEY). Model estimates of MSY and MEY were 9,228.8 and 8,227.1 tonnes, respectively. The corresponding fishing effort was estimated to be 40,000 net-hauls and 30,000 net-hauls at MSY and MEY, respectively. Revenues at MSY were estimated at MWK42.280 billion, while at MEY the revenues were MWK39.309 billion. The analysis shows that the current effort of 65,232 net-hauls has a yield of 6,000 tonnes, indicating that the Usipa fishery is currently overexploited over the optimum bio-economic level and even beyond the open access yield. We recommend reducing the fishing effort by 54% to realize the best economic benefits (Production at MEY) and end overfishing to protect the fishery from biological and economic collapses

    Episodic Disturbance from Boat Anchoring Is a Major Contributor to, but Does Not Alter the Trajectory of, Long-Term Coral Reef Decline

    Get PDF
    Isolating the relative effects of episodic disturbances and chronic stressors on long-term community change is challenging. We assessed the impact of an episodic disturbance associated with human visitation (boat anchoring) relative to other drivers of long-term change on coral reefs. A one-time anchoring event at Crab Cove, British Virgin Islands, in 2004 caused rapid losses of coral and reef structural complexity that were equal to the cumulative decline over 23 years observed at an adjacent site. The abundance of small site-attached reef fishes dropped by approximately one quarter after the anchoring event, but this drop was not immediate and only fully apparent two years after the anchoring event. There was no obvious recovery from the impact, and no evidence that this episodic impact accelerated or retarded subsequent declines from other causes. This apparent lack of synergism between the effect of this episodic human impact and other chronic stressors is consistent with the few other long-term studies of episodic impacts, and suggests that action to mitigate anchor damage should yield predictable benefits

    Comparing monitoring data collected by volunteers and professionals shows that citizen scientists can detect long-term change on coral reefs

    Get PDF
    Citizen science is increasing and can complement the work of professional scientists, but the value of citizen data is often untested. We therefore compared the long-term changes to coral reefs that were detected by a professional and volunteer monitoring program, operated by University of Rhode Island (URI) staff and Reef Check volunteers, respectively. Both groups monitored reefs in the British Virgin Islands from 1997 to 2012 but mostly monitored different sites (URI 8 sites and Reef Check 4 sites). When URI staff visited the Reef Check sites to perform a side-by-side to comparison, Reef Check fish density estimates were consistently higher than those made by URI observers but benthic indicators showed better agreement. When long-term trends were compared, the two programs detected qualitatively similar trends in the % cover of live coral and coral rubble, but temporal changes in the cover of other benthic indicators were less consistent. The URI program detected a widespread increase in parrotfish densities and a decline in snappers, whereas the Reef Check surveys detected no consistent changes in any fish density indicators. Overall, site-specific temporal trends revealed by the URI program were more often statistically significant than those from Reef Check (twice as often for benthic taxa, and five times as often for fish taxa), which implies greater precision of the scientists’ counts. Nonetheless, volunteers were able to detect important changes in benthic communities and so have a valuable role to play in assessing change on coral reefs
    • …
    corecore